Integrin pathway

Integrins are transmembrane receptors that are the bridges for cell-cell and cell-extracellular matrix (ECM) interactions. Integrins are heterodimers, consisting of two different chains: the α (alpha) and β (beta) subunits. When triggered, integrins in turn trigger chemical pathways to the interior (signal transduction), such as the chemical composition and mechanical status of the ECM, which results in a response (activation of transcription) such as regulation of the cell cycle, cell shape, and/or motility; or new receptors being added to the cell membrane. This allows rapid and flexible responses to events at the cell surface, for example to signal platelets to initiate an interaction with coagulation factors.

Integrins work alongside other receptors such as cadherins, the immunoglobulin superfamily cell adhesion molecules, selectins and syndecans to mediate cell–cell and cell–matrix interaction. Ligands for integrins include fibronectin, vitronectin, collagen, and laminin.

Integrin subunits span the cell membrane and have short cytoplasmic domains of 40–70 amino acids. The exception is the beta-4 subunit, which has a cytoplasmic domain of 1088 amino acids, one of the largest known cytoplasmic domains of any membrane protein. Outside the cell membrane, the α and β chains lie close together along a length of about 23 nm; the final 5 nm N-termini of each chain forms a ligand-binding region for the ECM. They have been compared to lobster claws, although the don't actually "pinch" their ligand, they chemically interact with it at the insides of the "tips" of their "pinchers".

The molecular mass of the integrin subunits can vary from 90 kDa to 160 kDa. Beta subunits have four cysteine-rich repeated sequences. Both α and β subunits bind several divalent cations. The role of divalent cations in the α subunit is unknown, but may stabilize the folds of the protein. The cations in the β subunits are more interesting: they are directly involved in coordinating at least some of the ligands that integrins bind.

Function of Integrin

Integrins have two main functions:- Attachment of the cell to the ECM, and Signal transduction from the ECM to the cell. Integrins couple the ECM outside a cell to the cytoskeleton (in particular, the microfilaments) inside the cell. Which ligand in the ECM the integrin can bind to is defined by which α and β subunits the integrin is made of. Among the ligands of integrins are fibronectin, vitronectin, collagen, and laminin. The connection between the cell and the ECM may help the cell to endure pulling forces without being ripped out of the ECM. The ability of a cell to create this kind of bond is also of vital importance in ontogeny.

Cell attachment to the ECM is a basic requirement to build a multicellular organism. Integrins are not simply hooks, but give the cell critical signals about the nature of its surroundings. Together with signals arising from receptors for soluble growth factors like VEGF, EGF, and many others, they enforce a cellular decision on what biological action to take, be it attachment, movement, death, or differentiation. Thus integrins lie at the heart of many cellular biological processes. The attachment of the cell takes place through formation of cell adhesion complexes, which consist of integrins and many cytoplasmic proteins, such as talin, vinculin, paxillin, and alpha-actinin. These act by regulating kinases such as FAK (focal adhesion kinase) and Src kinase family members to phosphorylate substrates such as p130CAS thereby recruiting signaling adaptors such as CRK. These adhesion complexes attach to the actin cytoskeleton. The integrins thus serve to link two networks across the plasma membrane: the extracellular ECM and the intracellular actin filamentous system. Integrin alpha6beta4 is an exception: it links to the keratin intermediate filament system in epithelial cells.

Role in Signal Transduction

Integrins play an important role in cell signaling by modulating the cell signaling pathways of transmembrane protein kinases such as receptor tyrosine kinases (RTK). While the interaction between integrin and receptor tyrosine kinases originally was thought of as uni-directional and supportive, recent studies indicate that integrins have additional, multi-faceted roles in cell signaling. Integrins can regulate the receptor tyrosine kinase signaling by recruiting specific adaptors to the plasma membrane. For example, β1c integrin recruits Gab1/Shp2 and presents Shp2 to IGF1R, resulting in dephosphorylation of the receptor. In a reverse direction, when a receptor tyrosine kinase is activated, integrins co-localise at focal adhesion with the receptor tyrosine kinases and their associated signaling molecules.

Outside-in signali transduction also involves the activation of kinases in response to integrin-mediated cell adhesion. The combination of lateral aggregation of integrins in the membrane and integrin ligand binding leads to recruitment and activation of FAK ( Focal adhesion kinase). This process is not entirely understood, but a conformational change leading to FERM domain displacement in FAK is involved. This change is associated with increased phosphorylation of tyrosine (Tyr)397, which along with an exposed PxxP motif forms a binding site for the Src homology 2 (SH2) and SH3 domains, respectively, of the Src kinase . Src then phosphorylates other tyrosines contributing to full activation of FAK. This active FAK/Src complex mediates a number of important signaling cascades downstream of integrins. Key examples include the control of the ERK MAP kinase pathway, the phosphatidylinositol-3 kinase (PI3K)/AKT pathway, and Rho GTPase activities.FAK) is upregulated in several human cancers and also plays a functional role in tumour angiogenesis. However, the association between breast cancer sub-types and tumour endothelial-FAK expression is unknown.

Readings and References

Integrin Structure, Activation, and Interactions-- Cold Spring Harbor

Integrin Signaling as a Cancer Drug Target

Tumour-associated endothelial-FAK correlated with molecular sub-type and prognostic factors in invasive breast cancer